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Introduction

A probabilistic graphical model (PGM) consists of a probability distribution, defined on a set
of variables, and a graph, such that each node in the graph represents a variable and the graph
represents (some of) the independencies of the probability distribution. Some PGMs, such as
Bayesian networks [29], are purely probabilistic, while others, such as influence diagrams [20],
include decisions and utilities.

OpenMarkov (see www.openmarkov.org) is an open source software tool developed at the
Research Center for Intelligent Decision-Support Systems (CISIAD) of the Universidad Nacional
de Educación a Distancia (UNED), in Madrid, Spain.

This tutorial explains how to edit and evaluate PGMs using OpenMarkov. It assumes that
the reader is familiar with PGMs. An accessible treatment of PGMs can be found in the book by
[28]; other excellent books are [23, 8, 22, 24, 27]. In Spanish, an introductory textbook on PGMs,
freely available on internet, is [9].

In this tutorial different fonts are used for different purposes:

• Sans Serif is used for the elements of OpenMarkov’s graphical user interface (the menu bar,
the network window, the OK button, the Options dialog...).

• Emphasized style is used for generic arguments, such as the names of variables (Disease,
Test...) and their values (present, absent...), types of networks (Bayesian network, influence
diagram...), etc.

• Bold is used for highlighting some concepts about probabilistic graphical models (finding,
evidence...).

• Typewriter is used for file names, extensions, and URLs (decide-therapy.pgmx, .csv,
www.openmarkov.org...).

Finally, we should mention that the sections marked with an asterisk (for example, Sec. 4.3) are
intended only for advanced users.

http://www.openmarkov.org
http://www.cisiad.uned.es
http://www.uned.es
http://www.openmarkov.org
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Chapter 1

Bayesian networks:
edition and inference

1.1 Overview of OpenMarkov’s GUI
This section offers a brief overview of OpenMarkov’s graphical user interface (GUI). The main
screen has the following elements (see Figure 1.1):

Figure 1.1: A Bayesian network consisting of two nodes.

1. The menu bar, which contains seven options: File, Edit, Inference, View, Window, Tools, and
Help.

2. The first toolbar, located just under the menu bar, contains several icons for the main opera-
tions: Create new network ( ), Open ( ), Save ( ), Load evidence ( ), Zoom ( ),
Inference ( ), Optimal strategy ( ), Decision tree ( ), Sensitivity analysis ( ), and Cost-
effectiveness analysis ( ).

3. The edit toolbar, located at the right of the first toolbar, contains six icons for several
operations: Cut ( ), Copy ( ), Paste ( ), Undo ( ), and Redo ( ), as well as five icons for
choosing the edit tool, which may be one of the following:

3



• Select object ( );
• Insert chance node ( );
• Insert decision node ( );
• Insert utility node ( );
• Insert link ( ).

4. The network window is displayed below these toolbars. Figure 1.1 shows the network
BN-disease-test.pgmx, which will be used as a running example along this tutorial.

1.2 Editing a Bayesian network
Let us solve the following problem using OpenMarkov.

Example 1.1. For a disease whose prevalence is 14% there exists a test with a sensitivity of 90%
and a specificity of 93%. What are the predictive values of the test for that disease?

In this problem there are two variables involved: Disease and Test. The disease has two values
or states, present and absent, and the test can give two results: positive and negative. Since the
first variable causally influences the second, we will draw a link Disease→Test.

1.2.1 Creation of the network
In order to create a network in OpenMarkov, click on the icon Create a new network ( ) in the
first toolbar. This opens the Network properties dialog. Observe that the default network type is
Bayesian network and click OK.

1.2.2 Structure of the network (graph)
In order to insert the nodes, click on the icon Insert chance node ( ) in the edit toolbar.

Then click on the point were you wish to place the node Disease, as in Figure 1.1. Open the
Node properties window by double-clicking on this node. In the Name field write Disease. Click on
the Domain tab and check that the values that OpenMarkov has assigned by default are present
and absent, which are just what we wished. Then click OK to close the window.

Instead of creating a node and then opening the Node properties window, it is possible to do
both operations at the same time by double-clicking on the point where we wish to create the
node. Use this shortcut to create the node Test. After writing the Name of the node, Test, open
the Domain tab, click Standard domains and select negative-positive. Then click OK.

Complete the graph by adding a link from the first node to the second: select the Insert link
tool ( ) and drag the mouse from the origin node, Disease, to the destiny, Test. The result must
be similar to Figure 1.1.

1.2.3 Saving the network
It is recommended to save the network on disk frequently, especially if you are a beginner in the
use of OpenMarkov. The easiest way to do it is by clicking on the Save network icon ( ); given that
this network has no name yet, OpenMarkov will prompt you for a File name; type BN-disease-test
and observe that OpenMarkov will add the extension .pgmx to the file name, which stands for
Probabilistic Graphical Model in XML; it indicates that the network is encoded in ProbModelXML,
OpenMarkov’s default format (see www.ProbModelXML.org).

1.2.4 Selecting and moving nodes
If you wish to select a node, click on the Selection tool icon ( ) and then on the node. You can
select several nodes individually, press the Control or Shift key while clicking on them. It is also
possible to select several nodes by dragging the mouse: the nodes whose center lies inside the
rectangle drawn will be selected.

4
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If you wish to move a node, click on the Selection tool icon and drag the node. It is also possible
to move a set of selected nodes by dragging any of them.

1.2.5 Conditional probabilities
Once we have the nodes and links, we have to introduce the numerical probabilities. In the case
of a Bayesian network, we must introduce a conditional probability table (CPT) for each node.

The CPT for the variable Disease is given by its prevalence, which, according with the state-
ment of the example, is P (Disease=present) = 0.14. We introduce this parameter by right-clicking
on the Disease node, selecting the Edit probability item in the contextual menu, choosing Table as
the Relation type, and introducing the value 0.14 in the corresponding cell. If we leave the edition
of the cell (by clicking a different element in the same window or by pressing Tab or Enter), the
value in the bottom cell changes to 0.86, because the sum of the probabilities must be one (see
Figure 1.2).

Figure 1.2: Conditional probability for the variable Disease.

The CPT for the variable Test is built by taking into account that the sensitivity (90%) is the
probability of a positive test result when the disease is present, and the specificity (93%) is the
probability of a negative test result when the disease is absent (see Figure 1.3):

Figure 1.3: Conditional probability for the variable Test.

A shortcut for opening the potential associated to a node (either a probability or a utility
potential) is to alt-click on the node.

1.3 Inference
Click the Inference button ( ) to switch from edit mode to inference mode. As the option prop-
agation is set to automatic by default, OpenMarkov will compute and display the prior probability
of the value of each variable, both graphically (by means of horizontal bars) and numerically—see
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Figure 1.4. Note that the Edit toolbar has been replaced by the Inference toolbar, whose buttons
are described below.

Figure 1.4: Prior probabilities for the network BN-disease-test.pgmx.

1.3.1 Entering findings
A finding consists of the assignment of a value to a variable as a consequence of an observation.
A set of findings is called an evidence case. The probabilities conditioned on a set of findings
are called posterior probabilities.

For example, a finding may be the test has given a positive result: Test = positive. Intro-
duce it by double-clicking on the state positive of the node Test (either on the string, or on the
bar, or on the numerical value) and observe that the result is similar to Figure 1.5: the node
Test is colored in gray to denote the existence of a finding and the probabilities of its states
have changed to 1.0 and 0.0 respectively. The probabilities of the node Disease have changed
as well, showing that P (Disease=present |Test=positive) = 0.6767 and P (Disease=absent |Test=
positive) = 0.3233. Therefore we can answer the first question posed in Example 1.1: the positive
predictive value (PPV) of the test is 67.67%.

An alternative way to introduce a finding would be to right-click on the node and select the
Add finding option of the contextual menu. A finding can be removed by double-clicking on the
corresponding value or by using the contextual menu. It is also possible to introduce a new finding
that replaces the old one.

1.3.2 Comparing several evidence cases
In order to compute the negative predictive value (NPV) of the test, click on the icon Create
a new evidence case ( ) and introduce the finding {Test = negative}. The result must be similar
to that of Figure 1.6. We observe that the NPV is P (Disease=absent |Test=negative) = 0.9828.

In this example we have two evidence cases: {Test = positive} and {Test = negative}. The
probability bars and the numeric values for the former are displayed in red and those for the
second in blue.
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Figure 1.5: Posterior probabilities for the evidence case {Test = positive}.

Figure 1.6: Posterior probabilities for the evidence case {Test = negative}.

1.4 Canonical models
Some probabilistic models are called canonical because they can be used as elementary blocks
for building more complex models [29]. There are several types of canonical models: OR, AND,
MAX, MIN, etc. [10]. OpenMarkov is able to represent several canonical models and take profit
of their properties to do the inference more efficiently. In order to see an example of a canonical
model, follow these steps:

1. Build the network shown in Figure 1.7.

2. Open the potential for node E, set the Relation type to OR / MAX and introduce the values

7



Figure 1.7: A network containing four nodes. The probability of E will be specified using a noisy
OR model.

Figure 1.8: Canonical parameters of a noisy OR model.

shown in Figure 1.8. The value 0.95 means that the probability that A causes E when the
other parents of E are absent is 95%. The value 0.01 means that the probability that the
causes of E not explicit in the model (i.e., the causes different from A, B, and C) produce
E when the explicit causes are absent is 1%.

3. Select the radio button Whole table to make OpenMarkov show the conditional probability
table for this node.
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Chapter 2

Learning Bayesian networks
from data

2.1 Introduction
There are two main ways to build a Bayesian network. The first one is to do it manually, with
the help of a domain expert, defining a set of variables that will be represented by nodes in the
graph and drawing causal arcs between them, as explained in Section 1.2. The second method to
build a Bayesian network is to do it automatically, learning the structure of the network (the
directed graph) and its parameters (the conditional probabilities) from a dataset, as explained in
Section 2.2.

There is a third approach, interactive learning [4], in which an algorithm proposes some
modifications of the network, called edits (typically, the addition or the removal of a link), which
can be accepted or rejected by the user based on their common sense, their expert knowledge or
just their preferences; additionally, the user can modify the network at any moment using the
graphical user interface and then resume the learning process with the edits suggested by the
learning algorithm. It is also possible to use a model network as the departure point of any
learning algorithm, or just to indicate the positions of the nodes in the network learned, or to
impose some links, etc. This approach is explained in Section 2.3.

When learning any type of model, it is always wise to gain insight about the dataset by
inspecting it visually. The networks used in this chapter are in the format Comma Separated
Values (CSV). They can be opened with a text editor, but this way it is very difficult to see
the values of the variables. A better alternative is to use a spreadsheet, such as OpenOffice Calc
or LibreOffice Calc. In some regional configurations, Microsoft Excel does not open these files
properly because it assumes that in .csv files the values are separated by semicolons, because the
comma is used as the decimal separator; a workaround to this problem is to open the file with a
text editor, replace the commas with semicolons, save it with a different name, and open it with
Microsoft Excel.

2.2 Basic learning options
2.2.1 Automatic learning
In this first example we will learn the Asia network [26] with the hill climbing algorithm, also
known as search-and-score [19]. As a dataset we will use the file asia10K.csv, which contains
10,000 cases randomly generated from the Bayesian network BN-asia.pgmx (Figure 2.1).

1. Download onto your computer the file www.openmarkov.org/learning/datasets/asia10K.
csv.

2. Open the dataset with a spreadsheet, as explained in Section 2.1.

9

http://www.cisiad.uned.es/ProbModelXML/examples/bn/BN-asia.pgmx
http://www.openmarkov.org/learning/datasets/asia10K.csv
http://www.openmarkov.org/learning/datasets/asia10K.csv


Figure 2.1: Network Asia proposed in [26].

Figure 2.2: OpenMarkov’s Learning dialog.

3. In OpenMarkov, select Tools . Learning. This will open the Learning dialog, as shown in
Figure 2.2.

4. In the Database field, select the file asia10K.csv you have downloaded.

5. Observe that the default learning algorithm is Hill climbing and the default options for this
algorithm are the metric K2 and a value of 0.5 for the α parameter, used to learn the numeric
probabilities of the network (when α = 1, we have the Laplace correction). These values can
be changed with the Options button.

6. Select Automatic learning and click Learn.

The learning algorithm builds the networks and OpenMarkov arranges the nodes in the graph in
several layers so that all the links point downwards—see Figure 2.3.
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Figure 2.3: Network Asia learned automatically.

2.2.2 Positioning the nodes with a model network
For those who are familiar with the Asia network as presented in the literature [26], it would be
convenient to place the nodes of the network learned in the same positions as in Figure 2.1 to see
more easily which links differ from those in the original network. One possibility is to drag the
nodes after the network has been learned. Another possibility is to make OpenMarkov place the
nodes as in the original network; the process is as follows:

1. Download the network www.cisiad.uned.es/ProbModelXML/examples/bn/BN-asia.pgmx.

2. Open the dataset asia10K.csv, as in the previous example.

3. Select Automatic learning.

4. In the Model network tab, select Load model network from file, click Open and select your file
BN-asia.pgmx.

5. Select Use the information of the nodes.

6. Click Learn.

The network learned has the same links as in Figure 2.3, but the nodes are in the same positions
as in Figure 2.1.

The facility for positioning the nodes as in the model network is very useful even when we
do not have a network from which the data has been generated: if we wish to learn several
networks from the same dataset—for example by using different learning algorithms or different
parameters—we drag the nodes of the first network learned to the positions that are more intuitive
for us and then use it as a model for learning the other networks; this way all of them will have
their nodes in the same positions.

2.2.3 Discretization and selection of variables
In OpenMarkov there are three options for preprocessing the dataset:

• selecting the variables to be used for learning,

• discretizing the numeric variables (or some of them), and

• treating missing values.

In this example we will illustrate the first two options; the third one is explained in Section 2.2.4.
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Figure 2.4: Selection and discretization of variables.

1. Download the dataset Wisconsin Breast Cancer, which has been borrowed from the UCI
Machine Learning Repository.

2. Open it with a spreadsheet and observe that all the variables are numeric except Diagnosis.

3. Open this dataset in OpenMarkov’s Learning dialog.

4. Select Automatic learning.

5. In the tab Preprocessing, select Use selected variables and and uncheck the box of the variable
ID, as shown in Figure 2.4. (Many medical databases contain administrative variables, such
as the patient ID, the date of admission to hospital, the room number, etc., which are
irrelevant for diagnosis and therefore should be excluded when learning a model.) If we had
specified a model network, the option Use only the variables in the model network would be
enabled.

6. In the Discretize field, common to all variables, select Equal width intervals,1 check the box
Same number of intervals2 and increase the Number of intervals to 3. This means that every
numeric variable will be discretized into three intervals of equal width, as we will verify after
learning the network.

7. Observe that the discretization combo box for the variable Diagnosis in the column Dis-
cretization says Do not discretize—even though in the Discretize field, common to all the
variables, we have chosen Equal width intervals—because this variable is not numeric and
hence cannot be discretized.

8. Click Learn. The result is shown in Figure 2.5.

9. At the Domain tab of the Node properties dialog of the node RadiusMean (placed at the lower
left corner in the graph), observe that this variable has three states, as shown in Figure 2.6,

1Another option is Equal frequency intervals, which can be used to create a set of intervals for each variable
such that the amount of database records for that variable in every interval would be the same. The option Do not
discretize would treat every numeric value as a different state (as if it were a string) of the corresponding variable.

2Leaving this option unchecked will allow you to choose a different number of intervals for each variable.
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Figure 2.5: Network learned with the Wisconsin Breast Cancer dataset.

corresponding to three intervals of the same width; the minimum of the first interval, 6.981,
is the maximum value for this variable in the dataset, and the maximum of the third interval,
28.11 is the maximum in the dataset—as you can easily check.

Figure 2.6: Intervals obtained for the discretized variable RadiusMean.

10. Repeat the previous step several times to examine the domains of the other numeric variables
of the network learned.
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2.2.4 Treatment of missing values
The following example explains the two rudimentary options that OpenMarkov offers currently
for dealing with missing values: the option Erase records with missing values ignores every register
that contains at least one missing value, while the option Keep records with missing values fills
every empty cell in the dataset with the string “missing”, which is then treated as if it were an
ordinary value. The drawback of the first one is that it may leave too few records in the dataset,
thus making the learning process completely unreliable. A drawback of the second option is that
assigning the string “missing” to a numeric variable converts it into a finite-state variable, which
implies that each numeric value will be treated as a different state; it is also problematic when
using a model network, because in general this network does not have the state “missing” and in
any case this state would have a different meaning.

In the following example we will use a combination of both options: for the two variables
having many missing values (workclass and occupation) we will select the option Keep records with
missing values, because the other option would remove too many records; for the other variables
we will select the option Erase records with missing values, which will remove only 583 cases,
namely 2% of the the records in the dataset.

1. Download the Adult dataset, which has also been borrowed from the UCI Machine Learning
Repository.

2. Open it with a spreadsheet and observe that most missing values are located on the variables
workclass and occupation.

3. Open it with OpenMarkov’s Learning dialog.

4. Select Automatic learning.

5. Switch to the Preprocessing tab. In the Discretize field select Equal width intervals; check
the box for Same number of intervals and increase the Number of intervals to 3. In the list of
variables, observe that the content of the Discretization column is Equal width intervals for
the 6 numeric variables and Do not discretize for the 9 finite-state variables.

6. Observe that the default value of the field Treat missing values is Specify for each variable.

7. In the Missing values column, select Erase records with missing values for all variables except
workclass and occupation, as mentioned above.

8. Click Learn. The result is shown in Figure 2.7.

2.3 Interactive learning
In the previous section we have explained the main options for learning Bayesian networks with
OpenMarkov, which are common for automatic and interactive learning. In this section we describe
the specific options for interactive learning.

2.3.1 Learning with the hill climbing algorithm
In this first example we will learn the Asia network with the hill climbing algorithm, as we did in
Section 2.2.1, but in this case we will do it interactively.

1. Open the dataset asia10K.csv.

2. Observe that by default the Learning type is Interactive learning.
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Figure 2.7: Network learned with the Adult dataset.

3. Click Learn. You will see a screen similar to the one in Figure 2.8. Observe that OpenMarkov
has arranged the nodes in a circle to facilitate the visualization of the links during the leaning
process. The Interactive learning window shows the score of each edit—let us remember that
we are using the metric K2. Given that the hill climbing algorithm departs from an empty
network, the only possible edits are the addition of links.

4. If we clicked Apply edit, OpenMarkov would execute the first edit in the list, namely the
addition of the link Dyspnea→Bronchitis. However, bronchitis is a disease and dyspnea is a
symptom. Therefore, it seems more intuitive to choose instead the second edit proposed by
the learning algorithm, namely the addition of the link Bronchitis→Dyspnea, whose score
is almost as high of that of the first. Do it by either selecting the second edit and clicking
Apply edit or by double-clicking on it.

5. Observe that after adding the link Bronchitis→Dyspnea, OpenMarkov generates the list of
possible edits for the new network and recomputes the scores.

6. Click Apply edit to select the first edit in the list, which is the addition of the link LungCancer→
TuberculosisOrCancer. The reason for this link is that when LungCancer is true then
TuberculosisOrCancer is necessarily true.

7. For the same reason, the network must contain a link Tuberculosis→TuberculosisOrCancer.
Draw it by selecting the Insert link tool ( ) and dragging from Tuberculosis to Tuberculosis-
OrCancer on the graph. Observe that OpenMarkov has updated again the list of edits even
though this change has been made on the graph instead of on the list of edits.

8. Click Complete phase or Finish to terminate the algorithm, i.e., to iterate the search-and-
score process until there remains no edit having a positive score. In this case, in which the
algorithm has only one phase, the only difference between these two buttons is that Finish
closes the Interactive learning window.
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Figure 2.8: Initial state of the interactive hill climbing algorithm for the dataset Asia.

Figure 2.9: A version of the network Asia used to impose some links on the learning process.

2.3.2 Imposing links with a model network
There is another use of the model network that can be applied also in automatic learning, but we
explain it here because its operation is more clear in interactive learning. We will also use the
following example to illustrate two additional options of interactive learning: Only allowed edits
and Only positive edits.

Assuming that you wish to impose that the network learned has the links LungCancer→
TuberculosisOrCancer and Tuberculosis→TuberculosisOrCancer, whatever the content of the data-
set, proceed as follows:

1. Open the Bayesian network BN-asia.pgmx.

2. Remove all the other links, as in Figure 2.9.

3. Open the dataset asia10K.csv.

4. In the Model network tab, select Use the network already opened and Start learning from model
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network.

5. Uncheck the boxes Allow link removal and Allow link inversion. Leave the box Allow link
addition checked.

6. Click Learn.

7. In the Interactive learning window, uncheck the box Only allowed edits. Observe that a new
edit is added on top of the list: the addition of link TuberculosisOrCancer→Tuberculosis,
which is not allowed because it would create a cycle in the Bayesian network. Check this
box again.

8. In the same window, uncheck the box Only positive edits. Click Apply edit six times. Observe
that some edits having negative scores are shown at the end of the list. Check that box
again.

9. Click Finish.

2.3.3 Learning with the PC algorithm
Finally, we will learn a network from the asia10K.csv dataset using the PC algorithm [32] to
observe how it differs from hill climbing. In order to understand the following example, let us
remember that the PC algorithm departs from a fully-connected undirected network and removes
every link that is not supported by the data. If two variables, X and Y , are independent, i.e., if
the correlation between them is 0, then the link X–Y is removed. If there is some correlation, a
statistical test of independence is performed to decide whether this correlation is authentic (i.e.,
a property of the general population from which the data was drawn) or spurious (i.e., due to the
hazard, which is more likely in the case of small datasets). The null hypothesis (H0) is that the
variables are conditionally independent and, consequently, the link X–Y can be removed. The
test returns a value, p, which is the likelihood of H0.3 When p is smaller than a certain value,
called significance level and denoted by α, we reject H0, i.e., we conclude that the correlation
is authentic and keep the link X–Y .4 In contrast, when p is above the threshold α we cannot
discard the null hypothesis, i.e., we maintain our assumption that the variables are independent
and, consequently, remove the link X–Y . The higher the p, the more confident we are when
removing the link. The PC algorithm performs several tests of independence; first, it examines
every pair of variables {X,Y } with no conditioning variables, then with one conditioning variable,
and so on.

The second phase of the algorithm consists of orienting some pairs of links head-to-head in
accordance with the results of the test of independence, as explained below. Finally, in the third
phase the rest of the links are oriented one by one.

In this example we apply the PC algorithm to the dataset asia10K, which we have already
used several times in this chapter.

1. Open the dataset asia10K.csv.

2. Select the PC algorithm. Observe that by default the independence test is Cross entropy
and the significance level is 0.05.

3. Click Learn. Observe that this algorithm departs from a completely connected undirected
network, as shown in Figure 2.10.5 In the first phase of the algorithm, each edit shown in
the Interactive learning window consists of removing a link due to a relation of conditional
independence; the motivation of each edit shows the conditioning variables (within curly
brackets) and the p-value returned by the test. The list of edits shows first the relations in

3More precisely, p is the probability of finding the observed correlation (or a bigger correlation) conditioned on
H0 being true.

4Please note that in Section 2.2.1, item 5, we used the symbol α to denote a parameter used to estimate the
probabilities after having learned the structure of the network. It has nothing to do with the significance level, also
denoted by α in the literature, used by the PC algorithm.

5It would be possible to run the PC algorithm departing from a model network, but in this case the result would
be unpredictable, as it would be difficult to find a theoretical justification for this approach.
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Figure 2.10: Initial state of the interactive PC algorithm for the database Asia.

which there is no conditioning variable; in this case, there are 7 relations. Within this group,
the edits having higher p-values are shown at the top of the list, because these are the links
we can remove more confidently.

4. Observe that for all these edits the p-value is above the threshold 0.05. If the checkbox Only
positive edit were unchecked, the list would also include the edits having a p-value smaller
than the threshold; in this example, there are 6 edits with p = 0.000. Of course, it does not
make sense to apply those edits. Therefore, we should keep the box checked.

5. Click Apply edit 7 times to execute the edits corresponding to no conditioning variables.

6. Observe that now the first edit proposed is to remove the link VisitToAsia−TuberculosisOr-
is “{Tuberculosis} p: 0.9981”, which means that VisitToAsia and TuberculosisOrCancer
are conditionally independent given Tuberculosis—more precisely, that the test aimed at
detecting the correlation between them, conditioned on Tuberculosis, has returned a p-value
of 0.9981, which is also above the significance level.

7. Click Apply edit 12 times to execute the edits corresponding to one conditioning variable.
Now you may click Apply edit 3 times to execute the edits corresponding to two conditioning
variables. Alternatively, you may click Complete phase to execute all the remove-link edits. (If
you click Apply edit when there is only one remaining edit in the current phase, OpenMarkov
automatically proceeds to the next phase after executing it.)

8. The second phase of the algorithm consists of orienting some pairs of links head-to-head
based on the tests of independence carried out in the first phase [29, 32]. You can execute
those edits one by one or click Complete phase to proceed to third phase, in which the rest
of the links will be oriented. It also possible to click Finish at any moment to make the
algorithm run automatically until it completes its execution.
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2.4 Exercises
As an exercise, we invite you to experiment with the Asia dataset using different significance levels
for the PC algorithm, different metrics for the hill climbing algorithm, different model networks to
impose or forbid some links, etc., and compare the resulting networks. You can also try blocking
and unblocking some of the edits proposed by the algorithm (with the buttons Block edit and Show
blocked), selecting other edits than those on the top of the list, adding or removing some links on
the graph, etc.

You can also experiment with the Alarm dataset (www.openmarkov.org/learning/datasets/
alarm10K.csv), which contains 10,000 records randomly generated from the Alarm network [3],
a very famous example often used in the literature on learning Bayesian networks.

Finally, you can use your favorite network, generate a dataset by sampling from it (Tools .
Generate database) and try to learn it back with different algorithms.
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Chapter 3

Decision analysis networks

This chapter describes another type of probabilistic graphical model, called decision analysis net-
work (DAN) [12]. They may contain three types of nodes: chance, decision, and utility. Decision
nodes represent the options that the decision maker can choose; chance nodes represent events
or properties that the decision maker cannot control directly; utility nodes represent the decision
maker values; for this reason they are sometimes called “value nodes”. Therefore DANs can be
seen as an extension of Bayesian networks, which only contain chance nodes. DANs are similar to
influence diagrams, but have several advantages which will become clear in the next chapter.

3.1 An example with one decision
In order to explain the edition and evaluation of DANs in OpenMarkov, let us consider the following
example.
Example 3.1. For the disease mentioned in Example 1.1 there are two therapies whose effec-
tiveness is indicated in Table 3.1.1 We assume that the test mentioned in that example is always
performed before deciding about the therapy. In what cases should each therapy be applied?

Disease = present Disease = absent
no therapy 1.2 10.0
therapy 1 4.0 9.9
therapy 2 6.5 9.3

Table 3.1: Effectiveness of the therapies.

We observe in Table 3.1 that the best scenario occurs when the disease is absent and no therapy
is applied (effectiveness = 10). In the worst scenario, the patient is suffering from the disease but
does not receive any therapy (effectiveness = 1.2). If a sick person receives the first therapy the
effectiveness increases to 4.0, while it increases to 6.5 with the second therapy. If a healthy person
receives the first therapy (by mistake) the effectiveness decreases to 9.9 as a consequence of the
side effects. The second therapy, which is more aggressive, makes the effectiveness decrease to 9.3
for healthy people. The problem is that we do not know with certainty whether the disease is
present or not, we only know the result of the test, which sometimes gives false positives and false
negatives. For this reason we will perform a decision analysis to find out the best intervention in
each case.

3.1.1 Editing the decision analysis network
The edition of DANs is similar to that of Bayesian networks. The main difference is that now the
icons for inserting decision nodes and utility nodes are enabled, as shown in Figure 3.1. It would

1At this moment we do not care about the scale used to measure effectiveness. We will discuss it in Chapter 5,
when speaking about multicriteria decision making.
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Figure 3.1: A DAN for deciding about the therapy (Example 3.1).

be possible to build a DAN for our problem from scratch, but in this case we will depart from the
Bayesian network for the Example 1.1.

1. Open the network BN-disease-test.pgmx. Open its contextual menu by right-clicking
on the background, click Network properties, and in the Network type field select Decision
analysis network. Observe that the icons for inserting decision nodes ( ) and utility nodes
( ) are now active.

2. Click on the Insert decision node icon and double-click on the place where you wish to insert
the node Therapy. In the Name field, type Therapy. Click on the Domain tab and set the
values (states) to no therapy, therapy 1, and therapy 2 ; OpenMarkov’s default values for
decision nodes are yes and no. Modify these states by double-clicking on their names and
add a new state using the Add button on the right side of the Node properties dialog.2

3. Click on the Insert utility node icon, double-click on the place where you wish to insert the
node, and in the Name field, type Effectiveness.

4. Draw the links Disease→Effectiveness and Therapy→Effectiveness because, according with
Table 3.1, the effectiveness depends on Disease and Therapy. The result should be similar
to that in Figure 3.1.

5. Open the potential for the node Effectiveness by selecting Edit utility in the contextual menu
or by alt-clicking on the node. In the Relation type field select Table. Introduce the values
given in Table 3.1, as shown in Figure 3.2.

6. Open the Node properties dialog for Test and check the box Always observed to indicate that
the result of the test is known before making the decision.

Please remember that the nodes Disease and Test have the potentials we assigned to them when
building the Bayesian network, namely, a conditional probability table for each node. The utility
node has the potential we have just assigned to it. The node Therapy does not need any potential
because it is a decision. Therefore, the DAN is complete. Save it as DAN-test-2therapies.pgmx.

2In the current version of OpenMarkov, when editing the name of a state it is necessary to press Tab or click
on another state to make the changes effective. If you click any button while editing the name, the change will be
lost. We will correct it in future versions.
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Figure 3.2: Utility table for the node Effectiveness.

Figure 3.3: Decision tree for Example 3.1. It results from the DAN in Figure 3.1.

3.1.2 Equivalent decision tree
Given a DAN, it is possible to expand an equivalent decision tree, as follows:

1. Click on the Decision tree icon ( ) in the first toolbar.

2. Observe that:

(a) Every branch outgoing from a chance node displays its probability, and the probabilities
of all the branches going out from each chance node sum 1.

(b) The probability of a positive result of the test is 0.1862, the same as in Figure 1.4.
When the test is positive, the probability of having the disease is 0.6767, the same as
in Figure 1.5; when it is negative, the probability is 0.0172, the same as in Figure 1.6.
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(c) The leaves of the tree represent the utilities given in the statement of the problem
(Table 3.1).

(d) The root of the tree shows the expected utility for this model.
(e) The utilities of inner nodes are the result of applying the roll-back algorithm [31, 30].
(f) A red box inside a node denotes the optimal choice for a decision in a scenario. Thus,

when the test has given a negative result, the optimal decision is not to apply any
therapy; when the result is positive, the optimal decision is to apply the second therapy.
We will later see that the optimal policy depends on the numerical parameters of the
model.

3. Collapse the suboptimal branches—i.e., those that go out of a decision node and do not have
a red mark—by click the “−” widget. Check that you obtain the same tree as in Figure 3.3.

3.1.3 Optimal strategy
The optimal strategy is display as a tree indicating which option to choose for each decision in
each scenario. If you click on the Optimal strategy icon ( ) in the first toolbar, you will obtain the
tree shown in Figure 3.4, which means that the optimal strategy is to apply the second therapy
when the test is positive and no therapy when it is negative. A strategy tree is similar to a decision
tree, but there are also some differences:

1. Strategy trees have three types of nodes: chance, decision, and nil, but nil nodes drawn.

2. The white boxes that you observe in Figure 3.4 are the labels of the branches; each branch
corresponds to one or more states of the variable from which the branch goes out.

3. Several chance nodes in the tree may correspond to the same node in the DAN; for example,
the nodes Therapy.

4. The parent of a nil node is always a decision node, which implies that the last node shown
in each branch is of type decision.

5. Each decision node has exactly one child; the label of its outgoing branch denotes the optimal
choice for that scenario.

6. The ancestors of a decision node in the tree (i.e., the nodes at its right) correspond to the
variables whose values are known when making the decision. The variables whose value is
never observed (for instance, Disease) do not appear in the strategy tree.

3.1.4 Order of the variables in the decision tree and the strategy tree
If a node appears between the root and a decision in the decision tree it means that the value
of that node is known before making the decision. For example, Test, which is at the right of
the decision Therapy in Figure 3.3 because we indicated that Test is Always observed. If a node
appears between a decision and the leaves, its value is not know when making the decision. For
example, Disease appears at the right of Therapy because its value is never observed. The order
in the strategy tree is the same, with the only difference that a variable that is never observed
does not appear in the tree, as mentioned above.

You can uncheck the box Always observed for the node Test in the DAN and see that the
order is that now the order of the variables in the decision tree is not Test–Therapy–Disease but
Therapy–Disease–Test, which means that the values taken by these variables are not known when
making the decision. Consequently, these variables do not appear in the strategy tree.

Now check the box Always observed for the node Disease and see that the order is Ther-
apy–Disease–Test in the decision tree and Therapy–Disease–Test in the strategy tree.

If we mark both Disease and Test as Always observed, both appear at the left of Therapy in
the decision tree, but Test does not appear in the optimal strategy because once we know with
certainty whether the patient has the disease or not, the result of the test is irrelevant.
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Figure 3.4: Strategy tree for Example 3.1. It also results from the DAN in Figure 3.1. Compare
it with the decision tree in Figure

Figure 3.5: A DAN with two decisions (Example 3.2).

3.2 An example with two decisions
In this section we introduce an example with two decisions.

Example 3.2. In the context of the previous example, is it worth doing the test?
Please note that, given that we have not assigned any economic cost nor any side effect to

the test, it will never cause any harm doing it. The issue is, therefore, whether it will bring any
profit. We can answer this question by introducing another decision in the model, as follows—see
Figure 3.5.

1. Open the network DAN-test-2therapies.pgmx.

2. Rename the node Test as Result of test, and uncheck the box Always observed.

3. Add the decision node Do Test?. Keep the default states, yes and no.

4. Draw the link Do Test?→Result of test.

5. If Do test? = no, the result of the test can be neither positive nor negative. We encode
this information by right-clicking on the link Do Test?→Result of test and selecting Add
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Figure 3.6: Restrictions for the link Do test? → Result of test. They mean that when the test is
not done it can give neither a positive nor a negative result.

Figure 3.7: Conditional probability table for Result of test. Some cells are colored in red because
of the restrictions shown in Figure 3.6 link restriction.

restrictions. Click on the cells of the first column; their value will change from 1 to 0 and
their color from green to red, as shown in the Figure 3.6.This means that Do test = no is
incompatible with both Result of test = yes and Result of test = yes. Press OK.

6. Observe the short perpendicular double line on that link: it denotes a total restriction, i.e.,
it means that at least one of the values of the parent variable, Do test, is incompatible with
all the values of the child variable, Result of test. (There would be a partial restriction if
at least one of the states of the parent were incompatible with some states of the child but
not with all of them. It would be denoted by a short perpendicular single line on the link.)

7. Open the probability table for Result of test and see that the cells corresponding to the
above restrictions are colored in red and its probability is 0. You may reorder the parents
of this variable, as in Figure 3.7, by clicking the Reorder variables button.

8. If the test is performed (Do Test? = yes), the result of test is known. In order to establish
this revelation condition, right-click on link Do Test?→Result of test, select Edit revelation
conditions and check the box for yes. The link will be colored in dark red.

9. Save this DAN as DAN-decide-test-2therapies.pgmx.

10. Observe that the optimal strategy is to do the test and apply the second therapy if and only
if it gives a positive result. In the decision tree you can check that the expected utility of
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Figure 3.8: Decision tree for Example 3.2. It results from the DAN in Figure 3.5.

doing the test, 9.3937, is higher than that of not doing it, 9.0740—see Figure 3.8—and the
optimal branches (those marked with red rectangles) are the same as in the strategy tree.
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Chapter 4

Influence diagrams

Influence diagram (IDs) are very similar to DANs. In fact, for every ID there is an equivalent
DAN; the transformation can be done with a straightforward algorithm. However, for most DANs
there is no equivalent ID. There are many problems that can be represented and solved with both
types of models but the DAN is easier to build than the ID. For these reasons we claim that DANs
can favorably replace IDs as a decision analysis tool. However, in this chapter we will present IDs
for two main reasons.

First, all decision analysts know the ID formalism and many of them have used it to solve
real-world problems. In contrast, DANs are almost unknown because they have been proposed
recently and no journal paper about them has been published yet. 1 If we did not describe IDs in
this tutorial, those analysts would miss them. For this purpose, we will use the same examples as
in the previous chapter.

Second, we wish to prove the above assertions that building DANs is easier than building IDs
(at least, it is never more difficult) and that some problems solvable with DANs cannot be solved
with IDs.

Third, the implementation of IDs in OpenMarkov, which started several years before the
creation of DANs, offer several facilities that are not yet available for DANs, such as the explanation
of reasoning, sensitivity analysis, cost-effectiveness analysis, and Markov models.

4.1 An example with one decision
4.1.1 Editing the ID
Building an ID for Example 3.1 is very similar to the construction of the equivalent DAN:

1. Open the network BN-disease-test.pgmx. Open its contextual menu by right-clicking
on the background, click Network properties, and in the Network type field select Influence
diagram. Observe that, again, the icons for inserting decision nodes ( ) and utility nodes
( ) are now active.

2. Insert the decision node Therapy, with states no therapy, therapy 1, and therapy 2, and the
utility node Effectiveness node, just as for the DAN. Draw the links Disease→Effectiveness
and Therapy→Effectiveness and enter the effectiveness values, as in Figure 3.1.

3. The main difference with the DANs lies in the way to indicate that the result of the test is
known before making the decision. Now, instead of ticking the Always observed checkbox,

1IDs were developed in the 1970s at the Stanford Research Institute. Near the end of that decade, Howard and
Matheson wrote a paper describing them. Being unable to get it accepted at any journal, they decided to publish
it in a book in 1984 [20]. Thus, for more than a quarter of a century a paper widely cited in decision analysis,
artificial intelligence, economics, control theory, and several other fields was not available in any periodicals library,
until it was included in a special double issue of the Decision Analysis journal in 2005 [21], together with several
retrospective papers about IDs. So far, the history of DANs is not very different. The paper describing them was
rejected at three conferences before being accepted at a workshop [13] and three relevant AI journals have already
rejected it. We hope this paper will not need other 25 years to appear in a journal.
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Figure 4.1: ID for Example 3.1. Compare it with the DAN in Figure 3.1.

which is not available for IDs, we draw a link from Result of test to Therapy. A link like
this, from a chance node to a decision, is called an information link.

4. You may rearrange the nodes to make the graph clearer, as shown in Figure 4.1.

5. Save the network as ID-test-2therapies.pgmx.

6. Check that the decision tree and the strategy tree are the same as for the DAN (Figs. 3.3
and 3.3).

4.1.2 Resolution, optimal strategy and maximum expected utility
We have seen that one way of evaluating a DAN or an ID consists in generating an equivalent
decision tree or a strategy tree. However, IDs are more restrictive than DANs, and this, which is
a disadvantage from the point of view of expressive power, makes it possible to perform several
types of inference which are not possible for general DANs.2 Let us now introduce a few concepts
to illustrate it.

The values that are known making a decision are said to be its informational predecessors.
In a DAN the informational predecessors of a decision are not always the same. Thus, for the DAN
in Fig 3.5, when Do test? = yes, both this decision and the variable Result of test are informational
predecessors of Therapy, but when Do test? = no, the only informational predecessor of Therapy
is Do test? In contrast, in an ID the informational predecessors of a decision are the same in all
the scenarios; it cannot occur that in some cases a variable X is observed when making decision
D and in other cases it is not.

This property of IDs allows us to define a policy for a decision as a family of probability
distributions such that there is one distribution for each configuration of its informational prede-
cessors. For example, the policy shown in Figure 4.2 contains one probability distribution for Test
= negative (first column) such that in this scenario the option no therapy will always by chosen
(probability = 1.0 = 100%). The probability distribution for Test = positive (second column)
states when the test gives a positive result the option therapy 2 will always be chosen. The reason
why some cells in Figure 4.2 are colored in red in will be explained below. A policy in which
every probability is either 0 or 1, as in this example, is called a deterministic policy. It is also
possible to have purely probabilistic policies, i.e., those in which some of the probabilities are
different from 0 and 1.

A strategy is a set of policies, one for each decision in the influence diagram. Each strategy
has a expected utility, which depends on the probabilities and utilities that define the influence
diagram and on the policies that constitute the strategy. A strategy that maximizes the expected
utility is said to be optimal. A policy is said to be optimal if it makes part of an optimal
strategy.

2There is very restricted subset of DANs, satisfying certain conditions of symmetry, such that for every ID there
is a symmetric DAN, and vice versa [14]. Therefore, the inference options that we will introduce in this section are
also available for symmetric DANs, but in general they cannot be applied to asymmetric DANs.
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Figure 4.2: Optimal policy for the decision Therapy.

Figure 4.3: Expected utility for the decision Therapy.

The resolution of an influence diagram consists of finding an optimal strategy and its expected
utility, which is the maximum expected utility.

In order to evaluate this influence diagram, click the Inference button ( ) to switch from edit
mode to inference mode. OpenMarkov performs two operations: the first one, called resolution,
consists of finding the optimal strategy, as we have just explained. The policies that constitute the
optimal strategy can be inspected at the corresponding decision nodes. For example, if you select
Show optimal policy in the contextual menu of the node Therapy, this will open the window shown
in Figure 4.2. For each column (i.e., for each configuration of the informational predecessors of
this node), the cell corresponding to the optimal option is colored in red. The contextual menu
of decision nodes also contains the option Show expected utility. The expected utility of Therapy
can be observed in Figure 4.3.

The second operation performed by OpenMarkov when switching to inference mode, called
propagation, consists of computing the posterior probability of each chance and decision node
and the expected utility of each utility node. The result is shown in Figure 4.4. Please note that
the probability distribution for Test is the same as in Figure 1.4. Given that this influence diagram
contains only one utility node, the value 9.3937 shown therein is the global maximum expected
utility of the influence diagram, which coincides with the one at the root node of the decision tree
in Figure 3.3.

4.2 An example with two decisions

We will now solve with an ID the problem stated in Example 3.2. The result is shown in Figure 4.5.
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Figure 4.4: Evaluation of the influence diagram ID-test-2therapies.pgmx.

4.2.1 Editing the influence diagram
The steps necessary to adapt the previous ID are the following:

1. Open the network ID-test-2therapies.pgmx.

2. Rename the node Test as Result of test.

3. Create the decision node Do Test?. Keep the default states, yes and no.

4. Draw the link Do Test?→Result of test.

5. If Do test? = no, the result of the test can be neither positive nor negative but, unlike the
case of DANs, the variable Result of test must take one value also in this case. For this
reason, we introduce the dummy state not done, as shown in Figure 4.6.

6. As the number of states for Result of test has changed, its conditional probability table has
been lost. Open the conditional probability table Result of test and introduce the sensitivity
and specificity of the test. Indicate that when the test is not performed, the probability of
not done is 1 (by definition), and when the test is done, the probability of not done is 0. It
may be necessary to use the Reorder variables option to obtain the table shown in Figure 4.7.

7. Save this influence diagram as ID-decide-test-2therapies.pgmx.

8. Observe that the strategy is the same as in Figure 3.4.

9. In contrast, the decision tree is bigger than that in Figure 3.8 because the node Result of
test appears also in the branches for Do test? = no, and it always has three branches, some
of which with zero probability.
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Figure 4.5: An influence diagram with two decisions (ID-decide-test-2therapies.pgmx, Exam-
ple 3.2).

Figure 4.6: States for Result of test in the ID for Example 3.2. We have added the dummy state
not done.

4.2.2 Resolution of the influence diagram
Let us now evaluate the influence diagram and examine all the information that OpenMarkov
offers us.

1. Click on the Inference icon. The result is shown in Figure 4.8.

2. We examine first the policies that constitute the optimal strategy. Observe that the optimal
policy for Do test? is to always do the test (Figure 4.9) because the expected utility for this
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Figure 4.7: Conditional probability table for Result of test.

Figure 4.8: Evaluation of the influence diagram ID-decide-test-2therapies.pgmx.

option is higher (Figure 4.10).

3. Examine the optimal policy for Therapy, shown in Figure 4.11. In that table, the first
column indicates that if the test is not performed the first therapy should be applied. The
penultimate column indicates that the therapies should not be applied when the test is done
and gives a negative result. The last column means that the second therapy should be applied

Figure 4.9: Optimal policy for the node Do test?.
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Figure 4.10: Expected utility for the node Do test?.

Figure 4.11: Policy for the decision Therapy in the influence diagram
ID-decide-test-2therapies.pgmx.

when the test is done and gives a positive result. The states in an impossible configuration
have the same probability of being the best alternative but, the expected utility of these
configurations are zero as shown in Figure 4.12.

There are three columns that indicate “apply the first therapy in 33% of cases, apply the
second therapy in 33% and do not apply any therapy in the other 33%”. The reason for this
is that, as there was a tie in the expected utilities, OpenMarkov has made the Solomonic
decision of not favoring any of the three options: a third of the patients should receive
the first therapy, other third should receive the second therapy and the other third should
not receive any therapy. However, the content of these columns is irrelevant because they

Figure 4.12: Expected utility for the decision Therapy in the influence diagram
ID-decide-test-2therapies.pgmx.
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correspond to impossible scenarios: two of them, {Do test? = no, Test = negative} and
{Do test? = no, Test = positive}, are impossible, because when the test is not done it gives
neither a positive nor a negative result—see Figure 4.7; the scenario {Do test? = yes, Test
= not performed} is also impossible due to an obvious contradiction—see again Figure 4.7.
The first column means that if the test were not done, the best option would be to apply the
first therapy. However, this scenario is also impossible because the optimal strategy implies
doing the test in all cases.

4. After having examined the policies, we analyze the posterior probabilities and the expected
utilities shown in Figure 4.8. Observe at the node Do test? that the test will be done in
100% of cases; this is a consequence of the optimal policy for this decision (Figure 4.9).

5. Observe at the node Therapy that 9.68% of patients will receive the therapy, exactly the same
proportion that will give a positive result in the test (see the node Test). This coincidence
is a result of the policy for the node Therapy, namely to apply the therapy if and only if the
test gives a positive result (see Figure 4.11).

6. The expected utility of Effectiveness is 9.3937, the same as in the example with only one
decision (Figure 4.4) in which the test was always done.

4.3 Introducing evidence in influence diagrams∗

This section, intended only for advanced users, describes the difference between the two kinds of
findings for influence diagrams in OpenMarkov: pre-resolution and post-resolution.

4.3.1 Post-resolution findings
Example 4.1. In the scenario of Example 3.2, what is the expected utility for the patients
suffering from the disease?

This question can be answered with the influence diagram ID-decide-test-2therapies.pgmx
by first evaluating it and then introducing the finding Disease = present, as we did with Bayesian
networks (Sec. 1.3.1). The result, shown in Figure 4.13, is that the test will give a positive result
in 90% of cases (in accordance with the sensitivity of the test) and a negative result in the rest.
We can also see that 90% of those patients will receive the second therapy, as expected from the
policy for Therapy. We can also see that the expected value of Effectiveness is 5.97; it is the result
of a weighted average, because the effectiveness is 6.5 for those having a positive test and 1.2 for
those having a negative test (see Table 3.1):6.5× 0.9 + 1.2× 0.1 = 5.97. Finally, the answer to the
above question is that the expected utility for those patients is 5.97.

Example 4.2. In the scenario of Example 3.2, what is the probability that of suffering from the
disease when the test gives a positive result?

This question can also be answered with the influence diagram ID-decide-test-2therapies.pgmx
in a similar way, i.e., introducing the post-resolution finding Result of test = positive, as in Fig-
ure 4.14, where we can see that the probability of suffering from the disease when the test gives a
positive result (a true positive) is 67.67%. This answers the question under consideration. We can
further analyze that figure and observe that 100% of the patients with a positive test will receive
the second therapy and that their expected effectiveness is 7.4053, which is the weighted average of
true positives and false positives (applying the second therapy): 6.5×0.6767+9.3×0.3233 = 7.4053.

4.3.2 Pre-resolution findings
Example 4.3. Given the problem described in Example 3.2, what would be the optimal strategy
if the decision maker—the doctor, in this case—knew with certainty that some patient has the
disease?
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Figure 4.13: Introduction of the post-resolution finding Disease = present.

Figure 4.14: Introduction of the post-resolution finding Test = positive.

One way to solve this problem with OpenMarkov is to use the influence diagram built above,
but introducing the finding Disease = present before evaluating this influence diagram—for this
reason it is called a pre-resolution finding. This can be accomplished by using the Add finding
option of the contextual menu of the node Disease in edit mode and then evaluating the influence
diagram—see Figure 4.15. The optimal strategy computed by OpenMarkov is “apply the second
therapy”. As we can see performing the test is irrelevant (there is a tie in the expected utilities of
both states).

Another difference is that the node Disease in Figure 4.15 is colored in dark gray to indicate
that it has a pre-resolution finding, while the lighter gray in Figure 4.13 denotes a post-resolution
finding.3

The main difference between the Examples 4.1 and 4.3 is that in the latter the decision maker
(the doctor) knows that the patient has the disease before making the decisions about the test and
the therapy—this is what a pre-resolution finding means—and for this reason he/she does not need
to do the test, while if in the Example 4.3 the doctor has decided to do the test to all patients
because he/she did not know with certainty who has the disease. The question posed in that
example takes the perspective of an external observer who, knowing the decision maker’s strategy,

3As a mnemonic, remember that a darker gray denotes a stronger impact on the influence diagram, because a
pre-resolution finding affects both the optimal strategy and the posterior probabilities and utilities, while a post-
resolution finding only affects the posterior probabilities and utilities. You can also remember that a lighter gray
denotes a finding that arrives later, i.e., after the resolution.
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Figure 4.15: Introduction of the pre-resolution finding Disease = present.

i.e., how he/she will behave, uses the influence diagram—the model—to compute the posterior
probabilities and the expected utilities for different subpopulations. Therefore the strategy does
not depend on the information known by the external observer, which is unknown to the decision
maker.

Pre-resolution findings, which are known to the decision maker since the beginning, i.e., before
making any decision, correspond to concept of evidence defined in [18], while post-resolution
findings correspond to the concept of evidence proposed in [25].

4.4 Imposing policies∗

OpenMarkov allows the user to impose policies on decision nodes. The decisions that have im-
posed policies are treated as if they were chance nodes, i.e., when the evaluation algorithm looks
for the optimal strategy it only returns optimal policies for those decisions that do not have
imposed policies, and these returned policies, which are optimal in the context of the policies
imposed by the user, may differ from the absolutely optimal policies.

The purpose of imposing policies is to analyze the behavior of the influence diagram for sce-
narios that can never occur if the decision maker applies the optimal strategy.

Example 4.4. Let us consider again the problem defined in the Example 3.2. In this case, the
optimal strategy would be “do test, and apply the second therapy only if the result of test is
positive”. However, we may wonder what would be the utility if the test is not performed.

In order to solve this problem, open ID-decide-test-2therapies.pgmx.

1. Be sure that the network don’t has any evidence and you are in edition mode.

2. Click on the Show optimal strategy icon. Observe that now the optimal policy is the same
than in Figure 4.16.

3. Click on the Inference mode icon. Enter Double-click on the state no of the node Do Test?
to observe the posterior probabilities of Disease.

The result is that OpenMarkov gives an error message, “Incompatible evidence”, because the test
cannot give a negative result if the posterior probability of doing the test is one. Then we can
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Figure 4.16: Optimal strategy for ID-decide-test-2therapies.pgmx.

say: “OK, I know the optimal policy is to do the test, but what would happen if, applying a
non-optimal policy, I decided to don’t do it?”, which is the question posed in the statement of
this example. This kind of what-if reasoning can be performed by following these steps:

1. Come back to edit mode by clicking on the Inference icon, because policies can only be
imposed in edit mode.

2. In the contextual menu of Do Test?, select Impose policy. In the field Relation type, select
Table and introduce the values shown in Figure 4.17. This imposed policy means that 100%
of patients will not receive the test.

Figure 4.17: Imposed policy for the node Dec:Test.

3. Click OK and observe that the node Do Test? is now colored in a darker blue, to indicate
that it has an imposed policy.

4. Evaluate the influence diagram. Observe that now the probability of not doing the test is
100%, as we wished.

5. Now the effectiveness is 9.0740 (Figure 4.18), which answers the question posed in the state-
ment of this example. Observe that now, the optimal policy for Therapy is to apply the first
therapy.
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Figure 4.18: Introduction of evidence with an imposed policy.
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Chapter 5

Multicriteria analysis with DANs
and IDs

The decision models we have considered so far have only one criterion: the effectiveness. However,
in practice tests and therapies have costs, which must be taken into account, as in the following
example:

Example 5.1. The test mentioned in the Example 3.2 has a cost of €150 and each possible
therapy has a cost shown in Table 5.1. The effectiveness, measured in quality-adjusted life years
(QALYs) is the same than in previous examples (Table 3.1).

Cost
No therapy € 0
Therapy 1 € 20,000
Therapy 2 €70,000

Table 5.1: Cost of each intervention.

The main problem is that now we have two different criteria (cost and effectiveness) and each
one is measured in different units (€ and QALYs respectively). So we will explain how to solve
this problem using IDs [1] and DANs [11].

5.1 Construction of multicriteria networks
In order to resolve this problem we are going to adapt ID-decide-test-2therapies.pgmx or
DAN-decide-test-2therapies.pgmx. These steps are the same for both networks.

1. As we have two different criteria, one for effectiveness and the other one for the costs, we have
to add these criteria to the network. First, double-click on the network panel to open the
Network properties dialog. Click on Advanced tab and then on Decision criteria. Use standard
criteria button to select Cost-effectiveness (€/QALY). The result is shown in Figure 5.1.

2. Open Effectiveness Node properties dialog and set Effectiveness as their decision criterion.

3. Create the utility node Cost of test. Open Node properties dialog and observe that Cost is
it decision criterion.

4. Create the utility node Cost of therapy. Open Node properties dialog and observe that Cost
is it decision criterion.

5. Draw the links Do test?→Cost of test and Therapy→Cost of therapy.
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Figure 5.1: Cost-effectiveness decision criteria.

Figure 5.2: Cost of test table.

6. Open the potential for the node Cost of test. In the Relation type field select Exact. Introduce
the value of Example 3.2, as shown in Figure 5.2.

7. Open the potential for the node Cost of therapy. In the Relation type field select Exact.
Introduce the values of Table 5.1.

8. Save the network as DAN-decide-test-2therapies-CE.pgmx or ID-decide-test-2therapies-CE.pgmx.

The resulting network must be similar to influence diagram or the DAN of the Figure 5.3.

Figure 5.3: An decision analysis network, DAN-decide-test-2therapies-CE.pgmx (left), and an
influence diagram, ID-decide-test-2therapies-CE.pgmx (right) for the problem in Example 5.1.
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Figure 5.4: Unicriterion transformation.

5.2 Analysis of multicriteria networks
OpenMarkov offers two different approaches to solving multicriteria problems. The first one con-
sists in joining all the criteria into a single one. For example, if we have two criteria, one measured
in hours per man, and another measured in economic units, we can transform the first one by
multiplying the hours per man by the mean salary of our team. With this transformation, we will
have only economic units.

The second approach is called cost-effectiveness analysis. Cost-effectiveness analysis (CEA) is
a form of multicriteria decision analysis frequently used in health economics [? ]. This approach
keeps costs and effectiveness separated. The model needs to have exactly two criteria (one for
cost and one for effectiveness) but OpenMarkov allows the user to use or even transform different
criteria as cost or effectiveness. For example, let’s suppose that we have three different criteria,
one for effectiveness, another for economic costs and the last one measured in hours per man.
We can transform the last criterion into economic costs and mark it’s role in the evaluation as a
normal cost.

5.2.1 Unicriterion analysis
Effectiveness is measured in quality-adjusted life years (QALYs) while costs are measured in euros
(€). To solve Example 5.1 we are going to transform QALYs into euros with a rate of 30,000
€/QALY. The effectiveness will measure a positive outcome in euros but we need to state that
costs should be a negative outcome. To do that we can transform the costs into negative.

Open Inference menu and click on Inference options. In the dialog observe that Unicriterion is
selected by default. Select € as Unit, set the scale of effectiveness to 30,000 €/QALY and the scale
of cost to -1. The result must see similar to shown in Figure 5.4.

At this point we are in the same situation than in chapters 3 and 4 and we can perform the
same type of analysis.

Open the optimal strategy and observe that now, when the result of test is positive, the therapy
to be applied is the first instead the second. That is because the cost of the second therapy is
much higher than the cost of the first therapy and the difference in effectiveness is not enough.
We can say that, for this situation, the first therapy is cost-effective compared with the second
therapy. This information is more specific in equivalent decision tree. In the Figure 5.5 we can see
that, the utility of apply the first therapy (when the result of test is positive) is €157,075 while
the utility of apply the second therapy is only €152,007.
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Figure 5.5: Equivalent decision tree for DAN-decide-test-2therapies-CE.pgmx and
ID-decide-test-2therapies-CE.pgmx.

5.2.2 Cost-effectiveness analysis
Transforming effectiveness values into economic values is not realistic because the rate or scale
depends on the decision maker. Cost-effectiveness analysis doesn’t have this limitation and keeps
costs and effectiveness separated. Click on the Cost-effectiveness analysis icon ( ) in the toolbar.
Cost-effectiveness analysis can also be launched in OpenMarkov in Tools > Cost effectiveness analysis
> Deterministic analysis (deterministic analysis as opposed to probabilistic analysis, described later
in the tutorial).

The first dialog launched allows us to select the inference options for cost-effectiveness analysis.
Be sure that the criteria have their proper roles selected. This selector lets the network to have
more than two criteria and use one or more for each role in the analysis. The inference options
will be similar to that shown in Figure 5.6.

Once the inference options are set up, OpenMarkov will ask us for the type of cost-effectiveness
analysis. There are two main types of analysis as shown in Figure 5.7, global analysis and for a
specific decision. Firstly we are going to analyze the global cost-effectiveness analysis.

5.2.2.1 Global cost-effectiveness analysis

Select Global and click OK. The dialog shows a table containing the cost and effectiveness values for
all possible intervals of lambda. Lambda represents the rate of transformation of the effectiveness
in economic units. In health economics is also called Willingness To Pay (WTP) as is the quantity
that the decision maker is disposed to pay per each unit of effectiveness (in this case per each
QALY).

Observe that instead of using a fixed WTP, OpenMarkov’s cost-effectiveness analysis calculates
these intervals for that there are a different optimal strategy (or intervention). Each intervention
has specific costs and effectiveness. If we click on the cell of an intervention we can see the optimal
strategy in its tree form. Observe that the optimal strategy when the WTP is between 11,171 and
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Figure 5.6: Inference options for cost-effectiveness analysis.

Figure 5.7: Types of cost-effectiveness analysis.

Figure 5.8: Global cost-effectiveness analysis.
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Figure 5.9: Optimal strategy when lambda is between 11,171 and 33,383 euros.

33,383 euros is the same than in the unicriterion analysis (shown in Figure 5.9). That’s because
the fixed lambda that we use for that analysis was 30,000 euros.

5.2.2.2 Cost-effectiveness analysis analysis for a decision

Click on the icon Cost-effectiveness analysis and now select One decision as type of analysis. Now
we must to select the decision for which we want to do the analysis. Select Do test? and click on
OK button.

Observe that now, in the Analysis tab, the resulting table have two rows, one for Do test? =
no and the other for Do test? = yes. In the left we can see a selector with different intervals. As
in the case of global analysis we can click on any green cell to see the tree form of the intervention
for that interval and that state of the decision.

CE Plane tab shows the cost-effectiveness plane, where cost is in the vertical axis and effective-
ness is in the horizontal axis. Each intervention is represented by a point in the two-dimensional
space. In our example, there is a point for Do Test? = yes and another for Do Test? = no, as
can be seen in Figure 5.10.

The last tab named Frontier interventions shows the incremental cost-effectiveness ratio (ICER)
between the therapies. If we have two therapies A and B, each one with a cost and effectiveness,
this ratio is defined as ICERB,A = CB−CA

EB−EA
and allows to compare the two therapies. If the ICER

is below WTP therapy B is said to be cost-effective with respect to therapy A.
Select the interval between 10,739 and 33,384 euros and observe that ICERyes,no = € 11, 171/QALY .

This means that, for a WTP lower than this value is preferable not performing the test while, for
greater WTP is better perform the test. We can see that this value is the same that the obtained
in global cost-effectiveness analysis (see Figure 5.8).

Now we are going to analyze the cost-effectiveness for Therapy. Click on the icon Cost-
effectiveness analysis, and select One decision as type of analysis. Select Therapy and check that
the dialog requests a scenario. A scenario is a path from the root to a node. If we observe the
equivalent decision tree (see Figure 5.5), we can see that before reaching Therapy we must pass
through Do test? and Result of test.
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Figure 5.10: Cost-effectiveness plane when analyzing Do Test?.

Min Max Therapy
0 10,739 no therapy

10,739 33,384 therapy 1
33,384 ∞ therapy 2

Table 5.2: Optimal policy for therapy on the scenario Do test? = yes and Result of test = positive.

Select the scenario Do test? = yes and Result of test = positive. In CE Plane tab we can
observe that, for this scenario, first therapy is expensive but give us more effectiveness than no
applying any therapy and second therapy is costly but has more effectiveness than the first therapy.
But, what is the optimal policy in each situation?. We can answer this question using ICER to
compare the therapies. ICER only allows to compare one intervention with another but we have
three possible therapies. OpenMarkov allows us to show or hide an intervention. By hiding an
intervention it will not be compared. With this functionality in mind use show/hide functionality
in the Frontier interventions tab to obtain the intervals of WTP and which therapy is better to
apply in each case. Result is presented on Table 5.2.
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Chapter 6

Cost-effectiveness with Markov
influence diagrams

In this tutorial we will explain how to perform cost-effectiveness analysis with Markov influence
diagrams (MIDs) [15]. We take as an example the well-known model by Chancellor et al. [7] for
HIV/AIDS, which is now obsolete for clinical practice, but can still be used for didactic purposes.
Thus, the web page for the book by Briggs et al. [5] contains an implementation of this model in
Excel.1 However, in this tutorial we implement it as an MID instead of a spreadsheet.
Example 6.1. There are two treatments for HIV infection. One of them (monotherapy) admin-
isters zidovudine all the time; the other (combined therapy) initially applies both zidovudine and
lamivudine but after two years, when the latter becomes ineffective, continues with zidovudine
alone. In this model, the clinical condition of the patient is characterized by four states, A, B, C,
and D, of increasing severity, where state D represents the death. The cycle length of the model is
one year. The transition probabilities, assumed to be time-independent, are shown in Tables 6.1
and 6.2. The sum of the probabilities in each column is 1 because the patient must either remain
in the same state or transition to one of the other three. The zeros in these tables mean that a
patient never regresses to less severe states. In particular, a patient who dies remains in state dead
for ever. Table 6.3 shows the annual costs associated with different states. The model is evaluated
for a time span of 20 years (after which more than 95 per cent of patients are expected to have
died). As in the original paper, costs are discounted at 6% and effectiveness at 2% per year.

↓destination | origin → state A state B state C dead
state A 0.721 0.000 0.000 0.000
state B 0.202 0.581 0.000 0.000
state C 0.067 0.407 0.750 0.000
dead 0.010 0.012 0.250 1.000

Table 6.1: Transition probabilities for monotherapy.

↓destination | origin → state A state B state C dead
state A 0.858 0.000 0.000 0.000
state B 0.103 0.787 0.000 0.000
state C 0.034 0.207 0.873 0.000
dead 0.005 0.006 0.127 1.000

Table 6.2: Transition probabilities for the first three years of combined therapy.

1http://www.herc.ox.ac.uk/pubs/books/decision/Ex25sol.
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state A state B state C dead
monotherapy £5034.00 £ 5330.00 £ 11285.00 £ 0.00

combined therapy £7119.50 £ 7415.50 £ 13370.50 £ 0.00

Table 6.3: Annual costs per states and therapy type.

6.1 Construction of the MID

6.1.1 Creation of the network
Click on the icon Create a new network ( ) in the first toolbar. In the Network properties dialog,
select MID as the Network type.

Double-click on the empty network panel to open the Network properties dialog. In the Advanced
tab, click Decision criteria and use standard criteria button to select Cost-effectiveness (£/QALY)..

6.1.2 Construction of the graph
Click on the icon Insert decision nodes ( ). Double-click on the empty network panel to create
a new node; in the Node properties dialog, write Therapy as the Name. Go to the Domain tab
and set the states of the variable to monotherapy and combined therapy. Please note that we are
following the convention of capitalizing the names of the variables and using lower case names for
their states. Click OK to save the changes.

Next, click on the icon Insert chance node ( ). Double-click on the network pane to create a
new node and name it Time in treatment and set its Time slice to 0. As a Comment you may
write How long the patient has been under treatment when the model starts. In the Domain tab set
the Variable type to Numeric, the Precision to 1, the Unit to year, and the interval to [0,∞). Click
OK to save the changes. Right-click on this node and choose Create node in next slice to create
the node Time in treatment [1]. Select the Insert link tool ( ) and drag the mouse from the node
Time in treatment [0] to Time in treatment [1] to create a link between these two nodes, as in
Figure 6.1.

Create the chance node State [0], i.e., create a node named State and set its Time Slice to 0.
Go to the Domain tab and set its states to state A, state B, state C and dead. Save the changes.
Right-click on the node and choose Create node in next slice to create the node State [1]. As the
state of the patient in cycle 1 depends on the state on the previous cycle, on the therapy applied,
and on the duration of the therapy (because lamivudine is given only in the combined therapy for
the first two years), add links from State [0], Therapy, and Time in treatment [1] to State [1], as
in Figure 6.1.

Click on the icon Insert value node ( ) and create the node Cost [0]; before closing the Node
properties dialog, observe that the Decision criterion assigned to this node is cost because by default
the decision criterion for value nodes is the first of the decision criteria of the network. As the
cost per cycle depends on the state patient and on the therapy applied, draw links from State [0],
Time in treatment [0], and Therapy to Cost [0]. Finally, create the value node Life years [0] and
set its Decision criterion to effectiveness. Draw a link from State [0] to Life years [0] as the amount
of life accrued in a cycle only depends on the patient’s state. If you wish to move any node, use
the Select object tool ( ).

Save the network as MID-Chancellor.pgmx.

6.1.3 Specification of the parameters of the model
After introducing the structural information of the MID, it is time to set parameters of the model,
i.e., the conditional probabilities and the utility functions. First, we introduce the prior probability
of State [0], that is, the proportion of patients in each state when the model starts. We assume
that initially all patients are in state A. In order to specify this, right-click on the node State [0]
and chose Edit probability... in the contextual menu (or alt-click on this node) and select Table as
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Figure 6.1: MID for Chancellor’s HIV model.

the Relation type. In the table, set the probability of state A to 1 and observe that the probabilities
of the other states become 0. Click OK.

Analogously, select Edit probability... for the node Time in treatment [1] and select Cycle-
LengthShift as the Relation type. This means that the value of Time in treatment increases in
each cycle by as much as a cycle length. Therefore, setting the value of Time in treatment [0]
value to 0 years will make Time in treatment [1] take the value 1 year, and so forth. If the cycle
length were half a year, the increase would be 0.5. Now, we must introduce the initial value of
Time in treatment [0]. Select Edit probability for the node, set Delta as the Relation type and 0 as
the numeric value.

We then introduce the probability of State [1] conditioned on its parents, State [0], Therapy,
and Time in treatment [1]. We might encode it as a table, but given that some of the values
of that table repeat themselves, it is more appropriate to use a tree: on the contextual menu of
State [1] select Edit probability... and choose Tree/ADD as the Relation type. (We will explain the
meaning of ADD very soon.) A small tree will appear inside an editor—see Figure 6.2. The root
of the tree is the first node that you declared as parent of State [1], i.e., it depends on which link
you drew first. If this root node is not Therapy, right-click on it, click Change variable and select
Therapy. The tree then has two branches, monotherapy and combined therapy. Remember that
when monotherapy is applied, the probability of the patient being in a state in cycle 1 depends
on the state in cycle 0, as indicated by Table 6.1; it does not depend on the duration of the
treatment. Consequently, right-click on the text P(State [1]) in the monotherapy branch, select
Add variables to potential, check the box for State [0], and click OK. Observe that the text has
changed into P(State [1]| State [0]). Right-click on this text, select Edit potential, chose Table as
the Relation Type, introduce the transition probabilities specified in Table 6.1, and click OK. This
branch should look like in Figure 6.2.

When the treatment is combined therapy, the probability of State [1] depends not only on
State [0] but also Time in treatment [1], because the patient receives zidovudine plus lamivudine
for three years and then zidovudine alone, as in the case of monotherapy. Therefore, the probability
of State [1] for combined therapy might be encoded as a three-dimensional table. However, it is
better to represent it as a tree with two branches: one for the first three cycles and another one for
the rest of the time, as in Figure 6.2. To introduce these branches, right-click on Therapy=combined
therapy and select Add subtree and Time in treatment [1]. This creates a subtree with a single
branch that covers the whole interval [0,∞). Right-click on the box containing that interval, select
Split interval and set 2 as the threshold value. Notice that the radio button Included in the first
interval is checked, which makes the threshold belong to the first sub-interval. This means that
the original interval will be partitioned into [0, 2] and (2,∞). Obviously, if we selected the option
Included in the second interval the partition would be {[0, 2), [2,∞)}. As we did in the monotherapy
branch, add the variable State [0] to the potential P(State [1]), right-click on the text P(State
[1]| State [0]) in this branch, choose Edit potential, select Table as the Relation Type, introduce
the transition probabilities specified in Table 6.2, and click OK. This branch should look like in
Figure 6.2.
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Figure 6.2: Conditional probability for State [1], represented as a tree.

Finally, the probability of State [1] for combined therapy after the second year is supposed to
be the same as that of monotherapy. Therefore, it would be possible to proceed as above and
copy again the values of Table 6.1 into a new table inside this probability tree, as in Figure 6.2.
One disadvantage of this representation is the need to introduce the same parameters twice; if
there is uncertain about a parameter, its second-order probability distribution will also have to be
introduced twice. A more important disadvantage is that if a parameter changes in the light of
new evidence, it will have to be updated in two places, with the risk of inconsistencies between the
branches of the tree. Finally, the main drawback of this representation is that when performing
sensitivity analyses OpenMarkov will sample those parameters independently, without realizing
that each parameter of the model appears twice in this probability tree.

Fortunately, it is possible to tell OpenMarkov that two branches of the tree are the same.
Properly speaking, in this case we do not have a tree, but an algebraic decision diagram (ADD)
[2], because a node in the “tree” belongs to more than one branches. Given that trees are a
particular case of ADDs, OpenMarkov and ProbModelXML have only one type of potential for
both of them, called Tree/ADD—see [? ] for a more detailed explanation.

The ADD for our example can be encoded as follows. Right-click on the node Therapy=Monotherapy
and select Set label, name it as “monotherapy”. Right-click on the node Time in treatment [1]=(2.0∞),
select Set reference and monotherapy, and click OK. The result will be as shown in Figure 6.3

Save the network.
The utility potential for the node Cost [0] can also be specified as a tree/ADD. The process

is very similar: in the contextual menu of this node, select Edit utility, select Tree/ADD as the
Relation type. Right-click on the root of the tree, State [0], select Change variable and choose
Therapy. In the branch monotherapy, right-click on Cost [0], select Add variables to potential and
choose State [0]. Right-click on Cost [0](State [0]), select Edit potential, choose Exact as Relation
type, introduce the cost associated each state, as specified in the first line of Table 6.3, and click
OK.

Right-click on Therapy=combined therapy, select Add subtree and Time in treatment [0]. Right-
click on Time in treatment [0]=[0.0, ∞) and select Split interval. Set 2 as the Threshold value and
observe that the option Included in first interval is selected. In the branch for the interval [0.0, 2.0],
right-click on U(Cost [0]), add State [0] as a variable, right-click on Cost [0](State [0]), select Edit
potential, choose Exact as Relation type, introduce the cost associated each state, as specified in
the second line of Table 6.3, and click OK.

Right-click on the node Therapy=monotherapy and set the label cost-monotherapy. Right-
click on the node for the interval (2.0, ∞) and set the reference cost-monotherapy. The resulting
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Figure 6.3: Conditional probability for State [1], represented as an ADD.

Figure 6.4: Value of Cost [0] as a function of its parents.

potential should resemble that of Figure 6.4. Click OK to save this potential.
The value of Life years [0] given its only parent State [0] is very simple: it is 1 for all states

except for dead, which is 0. This potential can be specified as a table containing four values, but we
will specify it as a tree. Right-click on Life years [0] and choose Edit potential from the contextual
menu. Select Tree/ADD as the Relation type. A tree with State [0] as the root node will appear.
Right-click on the state A branch and choose Add states to branch in the contextual menu. In the
dialog that will appear, check the boxes for state B and state C, and click OK. Right-clicking on
the node Life years [0] in this branch, set the relation type to Exact and write 1 in the only cell in
the table. Next, edit the potential of the dead branch in a similar way introducing 0 in the only
cell of this table. The resulting potential should look like the one in Figure 6.5

Save the network again.

6.2 Evaluation of the MID
The model contains all the relevant qualitative and quantitative information and is now ready for
evaluation. There are currently two ways of evaluating the model in OpenMarkov:

1. show the temporal evolution of a variable, and
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Figure 6.5: The effectiveness, represented by node Life years [0], depends on the patient’s state,
State [0].

Figure 6.6: Cost-effectiveness analysis options.

2. perform a cost-effectiveness analysis (CEA).

Before explaining these options in further detail, we describe the dialog used to configure both
types of evaluation.

6.2.1 Configuring the evaluation options
A dialog with the configurable options for cost-effectiveness analysis will pop up, as shown in
Figure 6.6. These options include:

• Horizon: The number of cycles the CEA will take into account.

• Transitions: In discrete-time Markov models, transitions can happen either at the beginning,
at the end, or in the middle of a cycle. The option chosen affects the computations [17, 16].

• Discounts: A discount can be applied for each criterion, specified either per year or per
cycle. If the discount is specified annually and the cycle length is different from one year,
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Figure 6.7: MID model expanded to three time slices

OpenMarkov automatically adjusts it; for example, if the cycle length were 3 months and
the user specified a 6% annual discount, OpenMarkov would apply a discount rate of 1.535
per cycle, because (1− 0.01535)4 = 1− 0.06.

6.2.2 Expanding the model
As shown in our example, when building a temporal model, i.e., a model that represents the
evolution of a system over time, only the sufficient information is entered as to be able to expand
the network to a variable number of cycles by creating instances of new time slices. Usually, it is
enough to represent the first time slice and those variables in the second time slice that depend
on the first to be able to expand a model.

In order to expand a network in OpenMarkov, right-click on an empty spot in the network
panel and choose the option Expand Network CE in the contextual network. The options dialog
described in the previous section will pop up and after entering the appropriate values (especially
the number of cycles to expand) and clicking OK, a new network panel will be opened containing
the expanded MID. Figure 6.7 shows the MID for the Chancellor model, expanded to three cycles.

6.2.3 Temporal evolution of variables
Analyzing the evolution of a variable over time can give us very useful information. In OpenMarkov,
given a strategy, the evolution of a chance or value variable can be plotted. In order to do so, first
impose a policy (as described in Section 4.4) to each decision node in the model, then right-click
on the node whose temporal evolution the user wants to analyze and choose Temporal Evolution
in the contextual menu. After introducing the evaluation parameters in the dialog described in
Section 6.2.1, the temporal evaluation of the variable will be represented in a dialog with two tabs.
The first will show a plot as the one in Figure 6.8, while the other will contain a table with the
values of the variable in each time slice.

6.2.4 Cost-effectiveness analysis
Cost-effectiveness analysis can be launched in OpenMarkov in Tools > Cost-effectiveness analysis >
Deterministic analysis (as opposed to probabilistic analysis, described below).

The results for deterministic cost-effectiveness analysis are separated in three tabs. The first
tab shows a table containing the cost and effectiveness values for every strategy.

The second tab shows the cost-effectiveness plane, where cost is in the vertical axis and effec-
tiveness is in the horizontal axis. Each intervention is represented by a point in the two-dimensional
space. In our example, there is a point for monotherapy and another for combined therapy, as can
be seen in Figure 6.10.

The third tab shows a list of frontier interventions along with the Incremental Cost-Effectiveness
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Figure 6.8: Evolution of variable State over time for combined therapy.

Figure 6.9: Cost-effectiveness analysis for Chancellor’s model.

Ratio (ICER). In our example, no intervention dominates the other, so both are frontier interven-
tions.

6.3 Probabilistic sensitivity analysis
Usually the parameters of a model (such as transition probabilities) are estimated (based on data
or an expert’s knowledge) and therefore are subject to uncertainty. In order to represent this
uncertainty, probability distributions are used instead of point estimates. In this section of the
tutorial we will further develop our running example by setting probability distributions to some
of the parameters and then we will run a probabilistic analysis based on a number of simulations.

Example 6.2. Following with our running example of the HIV/AIDS model, let us consider
that instead of having point estimates for transition probabilities in monotherapy we use Dirichlet
distributions with the parameters in Table 6.4.

Let us also consider to model direct medical and community care costs associated with each
state with gamma distributions. As little information was given in the original article about the
variance of costs, we will assume that the standard error is equal to the mean. Direct medical and
community care costs are shown in Table 6.5. Drug costs will remain fixed: £ 2278 for zidovudine
and £2086 for lamivudine.
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Figure 6.10: Cost-effectiveness plane for Chancellor’s model.

Figure 6.11: Frontier interventions for Chancellor’s model.

6.3.1 Introducing uncertainty in the model

First, the transition probabilities need to be modified to specify that these should be drawn from
a Dirichlet distribution. Right-click on the State [1] node and choose Edit probability... in the
contextual menu. The dialog that will pop up should look like Figure 6.2. Right-click on the text
P(State [1]|State [0]) just below the Monotherapy branch and choose Edit potential. Right-click
on any cell in the state A column and choose Assign uncertainty in the contextual menu and a
dialog similar to that in Figure 6.12 will pop up. Click on the cell in the Distribution column in
the first row and choose Dirichlet from the drop-down list. Enter the distribution’s parameter as

state A state B state C
state A 1251 - -
state B 350 731 -
state C 116 512 1312
dead 17 15 437

Table 6.4: withDirichlet distribution parameters for transition probabilities
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state A state B state C
Direct medical costs £1701 £1774 £6948
Community care costs £1055 £1278 £2059

Table 6.5: Direct medical and community care cost means associated with each state

Figure 6.12: Transition probabilities as Dirichlet distributions for P(State [1] | State [0] = state B).

specified in Table 6.4 (in this case 1251). Introduce the parameters for all transition probabilities,
making sure the values specified as dashes in Table 6.4 are represented by Exact distributions
whose parameter is zero (as in Figure 6.12).

Second, the Cost variable needs to be split into three different variables representing Commu-
nity care cost, Direct medical cost and Drug cost. Note that Drug cost will have the same parents
as the old Cost node had, that is, Therapy, Time in treatment [0] and State [0], but Commu-
nity care cost and Direct medical cost will only have one parent, State [0] as these are supposed
to be the same for both therapies. The resulting MID should look as in Figure 6.12.

Defining the utility function for Drug cost [0] is very similar to how we defined the utility

Figure 6.13: Chancellor’s model modified for probabilistic sensitivity analysis.
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Figure 6.14: Utility function for Drug cost [0].

function for the old Cost [0] node in Section 6.1.3, as it contains no uncertainty. Following the
same steps as in the mentioned section and with the help of Figure 6.14 you should be able to
define Drug cost [0]’s utility function.

Let us now use gamma distributions to define community care and direct medical costs. Right-
click on Direct medical cost [0] and choose Edit utility... from the contextual menu. Next, select
Table from the Relation Type drop down list. Right-click on the only cell of the state A column and
choose Assign uncertainty from the contextual menu. Choose “Gamma-mv” from the distribution
type drop down list in the only line in the table that pops up. OpenMarkov will then ask for
the parameters of the distribution mu and sigma, i.e., the mean and the standard error, which in
this case are both 1701 (as we have assumed that the standard error is equal to the mean). Do
the same for state B and state C using the appropriate values of the first row of Table 6.5. The
fourth state, dead, can be ignored as there is no cost attached to that state. Repeat these steps
for Community care cost [0], this time using the values of the second row of Table 6.5.

After doing this, the model is ready for probabilistic analysis.

6.3.2 Running the analysis
To launch the probabilistic analysis, go to Tools > Cost effectiveness analysis > Sensitivity analysis.
This will summon a dialog very similar to the one in Figure 6.6 but with an additional panel at
the bottom to determine the number of simulations that will be run in the analysis. Clicking OK
will launch the analysis, which will usually take a few seconds; the execution time will depend on
the size of the network, the number of cycles and the number of simulations.

The results of the analysis will be shown in a tabbed pane. The analysis summary and frontier
interventions panels will be very similar to the ones described in Section 6.2.4 and are therefore no
longer described here. However, the cost-effectiveness plane will have substantial differences, as the
result of every simulation will be represented in the plane, and therefore each intervention will be
represented as a cloud of points instead of a single point. Figure 6.15 shows the cost-effectiveness
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Figure 6.15: Probabilistic sensitivity analysis: cost-effectiveness plane for Chancellor’s model.

Figure 6.16: Probabilistic sensitivity analysis: acceptability curve for Chancellor’s model

plane resulting from the probabilistic analysis of the Chancellor’s MID.
In addition to the panels that were present in the deterministic analysis, there are two new

panels that show the results of probabilistic analysis. The first is the cost-effectiveness acceptability
curve (CEAC), which represents the probability of a treatment being cost-effective (i.e. acceptable)
depending on the willingness to pay, that is, the amount of money we are willing to pay for a
unit in effectiveness. Figure 6.16 shows the CEAC resulting from the probabilistic analysis of the
Chancellor’s MID. Note that there is a curve for each possible intervention, and that the probability
of the less costly intervention is 1 when the willingness to pay is zero (cost is all that matters). This
probability decreases and cuts the curve of the costlier (but more effective) intervention exactly
at the ICER. Finally, the more effective intervention’s probability of cost-effectiveness rises to one
as the willingness to pay approaches infinity.

Finally, the panel of Expected Value of Perfect Information represents the expected costs of
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Figure 6.17: EVPI in Chancellor’s model

uncertainty, as perfect information can eliminate the possibility of making the wrong decision. It
is also the maximum that the health care system should be willing to pay for additional research.
EVPI is calculated for the total population of patients who stand to benefit from additional
information over the expected lifetime of the technology, although the EVPI for future patients is
discounted at a certain rate. The graph can be customized through the parameters at the top of
the chart: the max ratio (the maximum value of cost-effectiveness threshold to take into account),
the population of patients, the lifetime of the technology and the discount rate.
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